SOLUTION STRENGTHENING AND AGE HARDENING CAPABILITY OF Al-Mg-Mn ALLOYS WITH SMALL ADDITIONS OF Cu
نویسندگان
چکیده
Nine Al-(1-3)Mg-(0-0.4)Cu-0.15Si-0.25Mn (in wt%) alloys with potential applications in both packaging and automotive industries have been investigated. Tensile testing showed that solution strengthening is in good approximation linearly proportional to the Mg content. Mechanical testing and microstructural examinations of aged samples indicate that Mg2Si phase precipitates contribute to age hardening of Cu-free alloys, whilst both Mg2Si phase and S (Al2CuMg) phases contribute to that of Cu-containing alloys. The age hardening capability is critically influenced by solution treatment temperature: increasing the solution treatment temperature from 500 to 550oC results in a marked increase in rate of hardening for Cu containing alloys and solution treatment at about 550oC or higher is needed to allow Mg2Si phase precipitation during ageing in Cu-free alloys with Mg content of about 2% or higher.
منابع مشابه
CREEP AGE FORMING OF Al-Zn-Mg ALLOYS WITH OPTIMIZATION OF MECHANICALl PROPERTIES
Creep age forming (CAF) is one of the novel methods in aerospace industry that has been used to manufacture components of panels with improved mechanical properties and reduced fabrication cost. CAF is a combined age-hardening and stress-relaxation that are responsible for strengthening and forming, respectively. This paper deals with the experimental investigations of mechanical and springback...
متن کاملGroup precipitation and age hardening of nanostructured Fe-based alloys with ultra-high strengths
The precipitation of nanoparticles plays a key role in determining the properties of many structural materials, and the understanding of their formation and stabilization mechanisms has been a long standing interest in the material field. However, the critical issues involving the group precipitation of various nanoparticles and their cooperative hardening mechanism remain elusive in the newly ...
متن کاملChallenges for Research and Development of New Aluminum Alloys
Aluminum alloys show a low weight, relatively high specific strength, good corrosion resistance in neutral environments and high electric and thermal conductivity. It makes them of interest for production of various functional components in aerospace and automotive industry. Wrought alloys generally have good formability and they are processed by common technologies, such as extrusion, forging,...
متن کاملNucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys
Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 C or 425 C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipita...
متن کاملModelling of Precipitation Hardening in Casting Aluminium Alloys
Precipitation hardening, because it involves the hardening of the material over a prolonged time, is also called age hardening, or ageing. By the appropriate heat treatment of precipitation hardening, the strength or hardness of some heat-treatable aluminium alloys can be enhanced by the formation of nano-meter sized second-phase precipitated particles within the original phase matrix. The fine...
متن کامل